[지디넷코리아]

인간은 스스로의 부족한 점을 보충하기 위해 조직을 만들어 과업에 대응한다. 인류는 서로의 장단점을 보완해 가며 역사를 이뤄냈다. 인간처럼 능동적으로 행동할 수 있는 AI 역시 팀을 이루면 각 AI의 장단점을 극복할 수 있다.
일리노이대학교, 메타, 아마존, 구글 딥마인드 등 글로벌 AI 연구 기관들이 발표한 대규모 연구 리포트가 AI의 새로운 진화 방향을 제시했다. 해당 논문에 따르면, 이 연구는 AI가 단순히 질문에 답하는 단계를 넘어, 마치 사람처럼 스스로 계획을 세우고 도구를 활용하며 경험을 통해 배우는 존재로 발전하고 있다고 밝혔다. 연구진은 이러한 AI의 능력을 ‘에이전트 추론’이라 부르며, 3단계로 나눠 설명했다. 기본적인 일 처리 능력, 스스로 학습하는 능력, 그리고 여러 AI가 협력하는 능력이다.

스스로 계획 세우고 도구 쓰고 정보 찾는 AI의 기본 능력
AI가 갖춰야 할 기본 능력은 크게 세 가지다. 계획 세우기, 도구 사용하기, 정보 찾기가 그것이다. 예를 들어, 리액트(ReAct)라는 시스템은 사람처럼 ‘생각하기’와 ‘행동하기’를 번갈아 가며 일을 처리한다. 큰 목표를 작은 단계로 나누고, 필요한 외부 도구를 불러 쓰며, 결과가 맞는지 확인하는 식이다.
도구를 사용하는 능력은 AI가 본래 가진 한계를 뛰어넘게 해준다. AI는 최신 정보를 모르거나 복잡한 계산을 못 하는 경우가 많은데, 이때 외부 프로그램을 호출해서 문제를 해결한다. 툴포머(Toolformer)라는 시스템은 스스로 필요한 프로그램을 만들어 쓰고, 툴LLM(ToolLLM)은 수많은 사용 예시를 보고 배우며, 허깅GPT(HuggingGPT)는 여러 도구를 동시에 조율해서 사용한다. 이들은 언제 도구를 써야 하는지, 어떤 도구가 적합한지, 어떻게 명령을 내려야 하는지를 스스로 판단한다.
정보를 찾는 능력도 똑똑해졌다. 기존 AI는 한 번만 검색해서 답을 찾았다면, 이제는 상황에 따라 언제, 무엇을, 어떻게 찾을지를 스스로 결정한다. 리액트는 생각하는 과정에 검색 명령을 끼워 넣고, 셀프-RAG(Self-RAG)는 매 단계마다 “더 찾아봐야 하나?”를 스스로 판단하며, 에이전트-G(Agent-G)는 일반 문서와 정리된 데이터베이스를 동시에 뒤져 답을 찾는다.

실패를 기억하고 다시 도전하는 AI: 경험으로 배우는 학습 능력
AI가 정말 똑똑해지려면 한 번 배운 것을 기억하고, 실수를 반복하지 않아야 한다. 이것이 바로 ‘스스로 진화하는 능력’이다. 정해진 방식대로만 일하는 게 아니라, 경험을 쌓고 기억하며 점점 나아지는 것이다. 리플렉시온(Reflexion) 같은 시스템은 AI가 자기 판단을 스스로 비판하고 개선하게 만들고, 메모리-R1(Memory-R1)은 무엇을 기억하고 어떻게 꺼내 쓸지를 학습한다.
기억 시스템은 AI가 똑똑해지는 핵심이다. 예전 방식은 단순히 정보를 저장만 했다면, 이제는 기억을 활용해서 판단하고 결정한다. Amem이라는 시스템은 AI가 스스로 상황에 맞는 기억을 만들고, 관련된 경험들끼리 연결하며, 새로운 정보가 들어오면 기억을 업데이트한다. 메모리뱅크(MemoryBank)와 워크플로우 메모리(Workflow Memory)는 이전에 어떤 과정으로 일했는지 추적해서, 나중에 비슷한 일을 더 잘할 수 있게 돕는다.
피드백 받아서 개선하는 능력도 중요하다. 과학 실험 AI는 실험 결과가 나아졌을 때만 다음 단계로 넘어가고, 화학 AI인 켐리즈너(ChemReasoner)는 화학 시뮬레이션 결과를 보고 아이디어를 수정한다. 노벨시크(NovelSeek)는 사람의 조언을 받을 때마다 코드와 계획을 고쳐나간다. 이런 방식으로 AI는 완전히 새로 학습하지 않아도 점점 더 나은 판단을 내릴 수 있게 된다.
각자 맡은 일 따로 있는 AI 팀: 협력으로 복잡한 문제 해결
혼자보다 여럿이 힘을 합치면 더 어려운 일을 해낼 수 있다. AI도 마찬가지다. 여러 AI가 각자 다른 역할을 맡아 협력하면 훨씬 복잡한 문제를 풀 수 있다. 관리자 AI는 전체 계획을 세우고, 실행자 AI는 실제 작업을 하며, 검증자 AI는 결과를 확인한다. 메타GPT(MetaGPT)는 소프트웨어 개발을 제품 기획자, 설계자, 프로그래머 AI로 나눠서 처리하고, 챗Dev(ChatDev)는 각 전문 AI들이 대화하며 요구사항 분석부터 코딩, 테스트까지 진행한다.
AI의 역할은 크게 두 종류로 나뉜다. 먼저 일반적인 역할이 있다. 리더 AI는 전체 목표를 정하고 일을 나눠 맡기며 의견이 엇갈릴 때 조정한다. 작업자 AI는 실제로 도구를 쓰고 코드를 작성하며 정보를 찾는다. 평가자 AI는 결과가 정확한지 확인하고 위험을 찾아낸다. 기억 담당 AI는 중요한 정보를 오래 보관하고 관리한다. 소통 담당 AI는 다른 AI들이 효율적으로 정보를 주고받게 돕는다.
분야별로 특화된 역할도 있다. 소프트웨어 개발에서는 시스템 설계자, 코드 작성자, 검토자, 자동화 담당자, 배포 관리자로 나뉜다. 의료 분야의 MDAgents는 진료 난이도에 따라 AI 팀 구성을 자동으로 조정하고, 닥터에이전트-RL(DoctorAgent-RL)은 의사-환자 대화를 학습으로 개선한다. AI들이 각자 맡은 분야를 전문적으로 처리하고 서로 결과를 검토하면서, 혼자서는 해결하기 어려운 복잡한 문제도 풀어낼 수 있다.
실험실에서 병원까지: 현실에서 일하기 시작한 AI 에이전트들
이런 AI 기술은 이미 여러 분야에서 실제로 쓰이고 있다. 수학 문제 풀이, 프로그래밍, 과학 연구, 로봇, 의료, 인터넷 검색 등 다양한 영역에서 활약 중이다. 과학 분야의 켐크로우(ChemCrow)는 여러 화학 도구를 자동으로 연결해서 화학 물질 합성 과정을 스스로 진행한다. 켐매트에이전트(CheMatAgent)는 100개가 넘는 화학 및 재료 관련 도구를 다루면서, 어떤 도구를 선택하고 어떻게 사용할지를 학습한다.
의료 분야에서도 활용도가 높다. 에이전트클리닉(AgentClinic)은 가상 병원 환경에서 환자 증상과 의료 영상을 보고 진단을 내린다. EHR에이전트(EHRAgent)는 환자의 전자 진료 기록을 분석해서 진단 코드를 예측하고 약물 치료를 제안한다. 다이나미케어(DynamiCare)는 환자 상태가 변하면 즉시 치료 계획을 수정하고, 메드에이전트짐(MedAgentGym)은 만든 코드를 실행해 보고 점수를 매겨서 정확도를 높인다.
인터넷을 자동으로 검색하는 AI도 발전했다. 웹아레나(WebArena)는 쇼핑몰과 예약 사이트 같은 실제 웹사이트 90개 이상을 AI가 사용할 수 있는지 시험한다. 비주얼웹아레나(VisualWebArena)는 화면을 보고 어디를 클릭해야 할지 판단하는 능력까지 평가한다. 에이전트Q(Agent Q)는 여러 경로를 미리 생각해 보고 가장 좋은 방법을 선택하며, 스스로 판단의 문제점을 찾아 개선한다.
기업이 AI 에이전트로 얻을 수 있는 5가지 기회
이번 연구가 제시한 AI의 3단계 진화는 단순한 이론이 아니라 기업의 실제 전략에 중요한 힌트를 준다.
첫째, 기본적인 에이전트 능력은 이미 실용화됐다. 오픈핸즈(OpenHands) 같은 시스템이 생각하고, 계획하고, 테스트하는 과정을 하나로 묶어서 처리하고 있으며, 이는 기업의 코드 작성과 자동화 업무에 바로 쓸 수 있다.
둘째, 스스로 배우는 능력이 AI 시스템의 수명을 결정한다. 기존 AI는 한 번 배우면 그게 끝이었지만, 기억과 피드백 기능을 가진 AI는 일하면서 계속 나아진다. 특히 고객 상담, 의료 진단, 법률 자문처럼 계속 새로운 지식이 쌓여야 하는 분야에서 경쟁력을 높여줄 것이다.
셋째, 여러 AI의 협력이 복잡한 업무 자동화의 핵심이다. 한 AI가 모든 것을 다 하는 것보다 각자 전문 분야를 맡은 AI들이 팀을 이루는 게 효과적이다. 메타GPT의 소프트웨어 개발 사례는 기획부터 코딩, 테스트까지 전 과정을 AI 팀으로 자동화할 수 있음을 보여준다. 기업이 AI를 도입할 때는 하나의 솔루션이 아니라 AI 생태계를 구축하는 관점으로 접근해야 한다.
넷째, 앞으로 중요해질 개인 맞춤형 서비스, 장기 학습, 세계 모델링 능력이 차세대 AI 제품의 차별화 요소가 될 것이다. 사용자 중심 AI는 개인의 취향과 행동 방식을 배워서 맞춤형 서비스를 제공한다. 이는 일반 소비자 서비스뿐 아니라 기업용 솔루션에서도 사용자 경험을 바꿀 잠재력이 있다.
마지막으로, 안전 관리 체계는 AI를 실제 환경에 투입하기 전에 반드시 갖춰야 한다. 스스로 판단하는 AI는 예상 못 한 행동을 할 수 있으며, 특히 의료나 금융 같은 중요한 분야에서는 안전장치와 모니터링이 필수다. 가드에이전트(GuardAgent) 같은 안전 시스템이 이미 연구되고 있으며, 기업은 AI 도입 초기부터 이런 안전장치를 설계에 포함해야 한다.
FAQ ( ※ 이 FAQ는 본지가 리포트를 참고해 자체 작성한 내용입니다.)
Q1. 에이전트 AI가 뭔가요? 기존 AI랑 뭐가 다른가요?
A. 에이전트 AI는 질문에 답만 하는 게 아니라 스스로 계획을 세우고, 필요한 도구를 찾아 쓰며, 환경과 계속 소통하면서 배우는 AI입니다. 기존 AI가 “질문 → 답변”으로 끝났다면, 에이전트 AI는 “목표 설정 → 계획 수립 → 실행 → 결과 확인 → 학습”의 전 과정을 스스로 진행합니다. 마치 사람처럼 일을 처리하는 거죠.
Q2. 스스로 배우는 AI는 어떻게 작동하나요?
A. 두 가지 방법으로 학습합니다. 첫째, 기억 시스템을 통해 과거 경험을 저장하고 나중에 다시 활용합니다. 둘째, 자기 평가 기능으로 자신이 한 일을 스스로 검토하고 개선점을 찾습니다. 예를 들어, 화학 실험 AI가 실험에 실패하면 그 내용을 기억해뒀다가 다음번엔 같은 실수를 안 합니다. 사람이 경험으로 배우는 것과 비슷합니다.
Q3. 여러 AI가 협력한다는 게 기업에서 어떻게 쓰이나요?
A. 복잡한 일을 역할별로 나눠서 처리합니다. 소프트웨어 개발을 예로 들면, 설계 담당 AI가 전체 구조를 짜고, 코딩 AI가 프로그램을 만들고, 검토 AI가 오류를 찾아냅니다. 의료 분야에서는 진단 AI, 치료 계획 AI, 환자 상태 모니터링 AI가 팀을 이뤄 종합적인 의료 서비스를 제공할 수 있습니다. 각자 잘하는 일을 맡아서 하니까 더 좋은 결과가 나옵니다.
■ 이 기사는 AI 전문 매체 ‘AI 매터스’와 제휴를 통해 제공됩니다. 기사는 클로드 3.5 소네트와 챗GPT를 활용해 작성되었습니다. (☞ 기사 원문 바로가기)
