[AI칩 전국시대 ①]韓 AI반도체 현주소: ‘엔비디아 대항마’를 넘어 실전으로

[지디넷코리아]

AI 시대의 개막과 함께 반도체 산업의 패러다임이 급변하고 있다. 인공지능 구현에 필수적인 고성능 반도체의 수요가 폭증함에 따라, 엔비디아의 GPU(그래픽처리장치)를 중심으로 한 글로벌 AI 생태계는 그 어느 때보다 공고한 성벽을 쌓아 올렸다. 그러나 최근 AI 시장의 무게추가 모델 학습에서 ‘추론(Inference)’으로 이동하며 GPU 중심의 시장 구조에 변화의 조짐이 나타나고 있다.

리벨리온 아톰 보드(사진=리벨리온)

생성형 AI의 확산은 데이터센터부터 엣지, 온디바이스 전반에 걸쳐 막대한 연산 수요를 창출하고 있다. 초기 시장이 대규모 언어 모델을 학습시키기 위한 GPU 중심이었다면, 이제는 학습된 모델을 실무 서비스에 적용하는 추론 단계가 핵심 경쟁력으로 부상했다.

이 과정에서 AI 연산에 특화된 NPU(신경망처리장치) 시장이 본격적으로 활성화되고 있다. NPU는 범용성을 갖춘 GPU와 달리 AI 알고리즘 처리에 최적화돼 있어, 전력 효율성과 비용 측면에서 압도적인 강점을 가진다. 글로벌 테크 기업들이 효율적인 AI 인프라 구축을 위해 NPU로 눈을 돌리면서, NPU는 GPU의 대안을 넘어 차세대 반도체의 주역으로 자리매김하고 있다.

퓨리오사AI가 TSMC로부터 인도받은 RNGD 칩을 기반으로 카드 양산 출하작업을 거치고 있다.(사진=퓨리오사 AI)

이러한 시장 변곡점에서 국내 AI 반도체 기업들은 글로벌 시장의 주도권을 잡기 위해 총력전을 펼치고 있다. 특히 2026년은 국내 주요 AI 반도체 스타트업들의 기술력이 담긴 칩들이 일제히 시장에 출시되는 시점으로, ‘한국 AI 반도체의 원년’이라 부르기에 부족함이 없다.

리벨리온, 퓨리오사AI, 딥엑스, 모빌린트 등 국내 기업들은 각기 다른 전략과 포지셔닝을 통해 글로벌 경쟁력 확보에 매진하고 있다. 이들은 단순한 기술 개발을 넘어 시제품(PoC) 단계를 통과하고 실제 양산 및 상용화 단계로 진입하며 실질적인 성과를 증명해야 하는 중요한 기로에 서 있는 셈이다.

본 기획은 국내 주요 AI 반도체 및 인프라 기업 7곳을 대상으로 이들의 기술력과 시장 생존 전략을 집중 조명한다. 각 기업의 주력 시장과 포지셔닝, 성능 및 전력 효율성, 그리고 소프트웨어(SW) 경쟁력을 다각도로 분석할 예정이다.

결론적으로, 급변하는 글로벌 공급망 리스크와 양산 과제 속에서 국내 기업들이 가진 강점(Strength), 약점(Weakness), 기회(Opportunity), 위협(Threat) 요인을 면밀히 분석함으로써 대한민국 AI 반도체 산업의 현주소와 미래 가능성을 제시하고자 한다.

답글 남기기

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다